41385d94

Перечисление функций


Вслед за разделом ТИПЫ идет раздел ФУНКЦИИ, в котором перечисляются операции, применяемые к экземплярам данного АТД. Как уже говорилось, эти операции будут главными компонентами определения типа, с их помощью описывается, что могут предложить его экземпляры, а не то, чем они являются.

Ниже приведен раздел ФУНКЦИИ для абстрактного типа данных STACK. Если вы разработчик ПО, то этот стиль описания вам знаком: строки этого раздела напоминают декларации типизированных языков программирования таких, как Pascal или Ada. Строка для операции new похожа на объявление переменной, остальные - на заголовки процедур.

Функции

  • put: STACK [G] × G → STACK [G]
  • remove: STACK [G]
    STACK [G]
  • item: STACK [G]
    G
  • empty: STACK [G] → BOOLEAN
  • new: STACK [G]
  • В каждой строке вводится определенная математическая функция, моделирующая соответствующую операцию над стеком. Например, функция put представляет операцию, которая вталкивает элемент на вершину стека.

    Почему функции? Большая часть программистов не посчитает такую операцию как put функцией. Когда во время работы программной системы операция

    put применяется к стеку, она, как правило, изменяет этот стек, добавляя к нему элемент. Вследствие этого в приведенной выше классификации операций put была "командой" - операцией, которая может модифицировать объекты. (Две другие категории операций - это конструкторы и запросы).

    Однако спецификация АТД - это математическая модель и в ее основании должны быть корректные математические методы. В математике понятие команды или, более общо, изменение чего-либо как таковое отсутствует: вычисление квадратного корня из числа 2 не изменяет само это число. Математические выражения просто определяют одни математические объекты в терминах некоторых других математических объектов. В отличие от вычисления программы на компьютере, они никогда не изменяют никакие математические объекты. Но поскольку мы нуждаемся в некотором математическом объекте для моделирования операций компьютера, то понятие функции представляется наиболее близким приближением.

    Начало  Назад  Вперед





    Forekc.ru
    Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий